MapReduce应用程序主REST API允许用户获取正在运行的MapReduce应用程序主控的状态。当前,这等效于正在运行的MapReduce作业。该信息包括应用程序主机正在运行的作业以及所有作业详细信息,例如任务,计数器,配置,尝试等。应通过代理访问应用程序主机。可将该代理配置为在资源管理器或单独的主机上运行。代理URL通常如下所示:http:// proxy-http-address:port / proxy / appid。
MapReduce应用程序主信息资源提供有关该Mapreduce应用程序主信息的总体信息。这包括应用程序ID,启动时间,用户,名称等。
当您请求mapreduce应用程序主信息时,该信息将作为信息对象返回。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| appId | 长 | 申请编号 | 
| startsOn | 长 | 应用程序启动的时间(从纪元开始以毫秒为单位) | 
| 名称 | 串 | 应用程序名称 | 
| 用户 | 串 | 启动应用程序的用户的用户名 | 
| 经过时间 | 长 | 自应用程序启动以来的时间(以毫秒为单位) | 
JSON回应
HTTP请求:
获取http:// proxy-http-address:port / proxy / application_1326232085508_0003 / ws / v1 / mapreduce / info
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
  “信息”:{
      “ appId”:“ application_1326232085508_0003”,
      “ startedOn”:1326238244047,
      “ user”:“ user1”,
      “ name”:“睡眠工作”,
      “ elapsedTime”:32374
   }
}
XML回应
HTTP请求:
接受:application / xml 获取http:// proxy-http-address:port / proxy / application_1326232085508_0003 / ws / v1 / mapreduce / info
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:223 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <信息> <appId> application_1326232085508_0003 </ appId> <name>睡眠作业</ name> <user> user1 </ user> <startedOn> 1326238244047 </ startedOn> <elapsedTime> 32407 </ elapsedTime> </ info>
作业资源提供了在此应用程序主机上运行的作业的列表。另请参见Job API,以获取作业对象的语法。
当您请求作业列表时,该信息将作为作业对象的集合返回。另请参见Job API,以获取作业对象的语法。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| 工作 | 作业对象数组(JSON)/零个或多个作业对象(XML) | 作业对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
  “职位” : {
      “工作”:[
         {
            “ runningReduceAttempts”:1,
            “ reduceProgress”:100,
            “ failedReduceAttempts”:0,
            “ newMapAttempts”:0,
            “ mapsRunning”:0,
            “ state”:“ RUNNING”,
            “ successfulReduceAttempts”:0,
            “ reducesRunning”:1,
            “ acls”:[
               {
                  “ value”:“”,
                  “名称”:“ mapreduce.job.acl-modify-job”
               },
               {
                  “ value”:“”,
                  “名称”:“ mapreduce.job.acl-view-job”
               }
            ],
            “ reducesPending”:0,
            “ user”:“ user1”,
            “ reducesTotal”:1
            “ mapsCompleted”:1
            “ startTime”:1326238769379,
            “ id”:“ job_1326232085508_4_4”,
            “ successfulMapAttempts”:1
            “ runningMapAttempts”:0,
            “ newReduceAttempts”:0,
            “ name”:“睡眠工作”,
            “ mapsPending”:0,
            “ elapsedTime”:59377,
            “ reducesCompleted”:0,
            “ mapProgress”:100,
            “诊断”:“”,
            “ failedMapAttempts”:0,
            “ killedReduceAttempts”:0,
            “ mapsTotal”:1
            “ uberized”:错误,
            “ killedMapAttempts”:0,
            “ finishTime”:0
         }
     ]
   }
 }
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:1214 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<职位>
  <工作>
    <startTime> 1326238769379 </ startTime>
    <finishTime> 0 </ finishTime>
    <elapsedTime> 59416 </ elapsedTime>
    <id> job_1326232085508_4_4 </ id>
    <name>睡眠作业</ name>
    <user> user1 </ user>
    <状态>运行中</状态>
    <mapsTotal> 1 </ mapsTotal>
    <mapsCompleted> 1 </ mapsCompleted>
    <reducesTotal> 1 </ reducesTotal>
    <reducesCompleted> 0 </ reducesCompleted>
    <mapProgress> 100.0 </ mapProgress>
    <reduceProgress> 100.0 </ reduceProgress>
    <mapsPending> 0 </ mapsPending>
    <mapsRunning> 0 </ mapsRunning>
    <reducesPending> 0 </ reducesPending>
    <reducesRunning> 1 </ reducesRunning>
    <uberized> false </ uberized>
    <diagnostics />
    <newReduceAttempts> 0 </ newReduceAttempts>
    <runningReduceAttempts> 1 </ runningReduceAttempts>
    <failedReduceAttempts> 0 </ failedReduceAttempts>
    <killedReduceAttempts> 0 </ killedReduceAttempts>
    <successfulReduceAttempts> 0 </ successfulReduceAttempts>
    <newMapAttempts> 0 </ newMapAttempts>
    <runningMapAttempts> 0 </ runningMapAttempts>
    <failedMapAttempts> 0 </ failedMapAttempts>
    <killedMapAttempts> 0 </ killedMapAttempts>
    <successfulMapAttempts> 1 </ successfulMapAttempts>
    <acls>
      <name> mapreduce.job.acl-modify-job </ name>
      <value> </ value>
    </ acls>
    <acls>
      <name> mapreduce.job.acl-view-job </ name>
      <value> </ value>
    </ acls>
  </ job>
</ jobs>
作业资源包含有关由该应用程序主机启动的特定作业的信息。某些字段仅在用户具有权限时才可访问-取决于acl设置。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 工作编号 | 
| 名称 | 串 | 工作名称 | 
| 用户 | 串 | 用户名 | 
| 州 | 串 | 作业状态-有效值为:NEW,INITED,RUNNING,Succeeded,FAILED,KILL_WAIT,KILLED,ERROR | 
| 开始时间 | 长 | 作业开始的时间(从纪元开始以毫秒为单位) | 
| finishTime | 长 | 作业完成的时间(从开始到现在的毫秒数) | 
| 经过时间 | 长 | 自作业开始以来经过的时间(毫秒) | 
| mapsTotal | 整型 | 地图总数 | 
| mapsCompleted | 整型 | 完成的地图数 | 
| reduceTotal | 整型 | 减少总数 | 
| reduceCompleted | 整型 | 完成数量减少 | 
| 诊断 | 串 | 诊断消息 | 
| 超级 | 布尔值 | 指示该作业是否为超级作业-完全在应用程序主服务器中运行 | 
| mapsPending | 整型 | 仍要运行的地图数量 | 
| mapsRunning | 整型 | 正在运行的地图数 | 
| reducePending | 整型 | 减少数量仍需运行 | 
| reduceRunning | 整型 | 运行次数减少 | 
| newReduce尝试 | 整型 | 新的减少尝试次数 | 
| runningReduceAttempts | 整型 | 运行减少尝试的次数 | 
| failedReduce尝试 | 整型 | 减少尝试失败的次数 | 
| 减少尝试 | 整型 | 减少尝试的失败次数 | 
| 成功减少尝试 | 整型 | 成功减少尝试的次数 | 
| newMapAttempts | 整型 | 新地图尝试次数 | 
| runningMapAttempts | 整型 | 正在运行的地图尝试次数 | 
| failedMapAttempts | 整型 | 失败的映射尝试次数 | 
| KilledMapAttempts | 整型 | 被杀死的地图尝试次数 | 
| successMapAttempts | 整型 | 成功的地图尝试次数 | 
| ACL | acls(json)/零个或多个acls对象(xml)的数组 | ACLS对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 服务器:码头(6.1.26) 内容长度:720
响应主体:
{
   “工作”:{
      “ runningReduceAttempts”:1,
      “ reduceProgress”:100,
      “ failedReduceAttempts”:0,
      “ newMapAttempts”:0,
      “ mapsRunning”:0,
      “ state”:“ RUNNING”,
      “ successfulReduceAttempts”:0,
      “ reducesRunning”:1,
      “ acls”:[
         {
            “ value”:“”,
            “名称”:“ mapreduce.job.acl-modify-job”
         },
         {
            “ value”:“”,
            “名称”:“ mapreduce.job.acl-view-job”
         }
      ],
      “ reducesPending”:0,
      “ user”:“ user1”,
      “ reducesTotal”:1
      “ mapsCompleted”:1
      “ startTime”:1326238769379,
      “ id”:“ job_1326232085508_4_4”,
      “ successfulMapAttempts”:1
      “ runningMapAttempts”:0,
      “ newReduceAttempts”:0,
      “ name”:“睡眠工作”,
      “ mapsPending”:0,
      “ elapsedTime”:59437,
      “ reducesCompleted”:0,
      “ mapProgress”:100,
      “诊断”:“”,
      “ failedMapAttempts”:0,
      “ killedReduceAttempts”:0,
      “ mapsTotal”:1
      “ uberized”:错误,
      “ killedMapAttempts”:0,
      “ finishTime”:0
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:1201 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<工作>
  <startTime> 1326238769379 </ startTime>
  <finishTime> 0 </ finishTime>
  <elapsedTime> 59474 </ elapsedTime>
  <id> job_1326232085508_4_4 </ id>
  <name>睡眠作业</ name>
  <user> user1 </ user>
  <状态>运行中</状态>
  <mapsTotal> 1 </ mapsTotal>
  <mapsCompleted> 1 </ mapsCompleted>
  <reducesTotal> 1 </ reducesTotal>
  <reducesCompleted> 0 </ reducesCompleted>
  <mapProgress> 100.0 </ mapProgress>
  <reduceProgress> 100.0 </ reduceProgress>
  <mapsPending> 0 </ mapsPending>
  <mapsRunning> 0 </ mapsRunning>
  <reducesPending> 0 </ reducesPending>
  <reducesRunning> 1 </ reducesRunning>
  <uberized> false </ uberized>
  <diagnostics />
  <newReduceAttempts> 0 </ newReduceAttempts>
  <runningReduceAttempts> 1 </ runningReduceAttempts>
  <failedReduceAttempts> 0 </ failedReduceAttempts>
  <killedReduceAttempts> 0 </ killedReduceAttempts>
  <successfulReduceAttempts> 0 </ successfulReduceAttempts>
  <newMapAttempts> 0 </ newMapAttempts>
  <runningMapAttempts> 0 </ runningMapAttempts>
  <failedMapAttempts> 0 </ failedMapAttempts>
  <killedMapAttempts> 0 </ killedMapAttempts>
  <successfulMapAttempts> 1 </ successfulMapAttempts>
  <acls>
    <name> mapreduce.job.acl-modify-job </ name>
    <value> </ value>
  </ acls>
  <acls>
    <name> mapreduce.job.acl-view-job </ name> <value> </ value>
  </ acls>
</ job>
使用作业尝试API,您可以获得代表作业尝试的资源集合。在此资源上运行GET操作时,您将获得一个Job Attempt对象的集合。
当您请求作业尝试列表时,该信息将作为作业尝试对象数组返回。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| 工作尝试 | 作业尝试对象数组(JSON)/零个或多个作业尝试对象(XML) | 作业尝试对象的集合 | 
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 工作尝试编号 | 
| nodeId | 串 | 尝试运行的节点的节点ID | 
| nodeHttpAddress | 串 | 尝试运行的节点的节点http地址 | 
| logsLink | 串 | 作业尝试日志的http链接 | 
| containerId | 串 | 尝试作业的容器的ID | 
| 开始时间 | 长 | 尝试的开始时间(自纪元以来以毫秒为单位) | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / jobattempts
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ jobAttempts”:{
      “ jobAttempt”:[
         {
            “ nodeId”:“ host.domain.com:8041”,
            “ nodeHttpAddress”:“ host.domain.com:8042”,
            “ startTime”:1326238773493,
            “ id”:1
            “ logsLink”:“ http://host.domain.com:8042/node/containerlogs/container_1326232085508_0004_01_000001”,
            “ containerId”:“ container_1326232085508_0004_01_000001”
         }
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / jobattempts 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:498 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<jobAttempts>
  <jobAttempt>
    <nodeHttpAddress> host.domain.com:8042 </ nodeHttpAddress>
    <nodeId> host.domain.com:8041 </ nodeId>
    <id> 1 </ id>
    <startTime> 1326238773493 </ startTime>
    <containerId> container_1326232085508_0004_01_000001 </ containerId>
    <logsLink> http://host.domain.com:8042/node/containerlogs/container_1326232085508_0004_01_000001 </ logsLink>
  </ jobAttempt>
</ jobAttempts>
使用作业计数器API,您可以反对代表该作业的所有计数器的资源集合。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 工作编号 | 
| 柜台集团 | counterGroup对象的数组(JSON)/零个或多个counterGroup对象的XML | 计数器组对象的集合 | 
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| 名称 | 串 | 柜台名称 | 
| reduceCounterValue | 长 | 减少任务的计数器值 | 
| mapCounterValue | 长 | 地图任务的对价 | 
| totalCounterValue | 长 | 所有任务的对价 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / counters
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ jobCounters”:{
      “ id”:“ job_1326232085508_4_4”,
      “ counterGroup”:[
         {
            “ counterGroupName”:“随机播放错误”,
            “柜台”:[
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ BAD_ID”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“连接”
               },
              {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ IO_ERROR”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ WRONG_LENGTH”
               },{
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ WRONG_MAP”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ WRONG_REDUCE”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.FileSystemCounter”,
            “柜台”:[
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:2483,
                  “名称”:“ FILE_BYTES_READ”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:108763,
                  “名称”:“ FILE_BYTES_WRITTEN”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ FILE_READ_OPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ FILE_LARGE_READ_OPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ FILE_WRITE_OPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:48,
                  “名称”:“ HDFS_BYTES_READ”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ HDFS_BYTES_WRITTEN”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1
                  “名称”:“ HDFS_READ_OPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ HDFS_LARGE_READ_OPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ HDFS_WRITE_OPS”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.TaskCounter”,
            “柜台”:[
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1
                  “名称”:“ MAP_INPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1200,
                  “名称”:“ MAP_OUTPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:4800,
                  “名称”:“ MAP_OUTPUT_BYTES”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:2235,
                  “名称”:“ MAP_OUTPUT_MATERIALIZED_BYTES”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:48,
                  “名称”:“ SPLIT_RAW_BYTES”
               },
              {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ COMBINE_INPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ COMBINE_OUTPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:460,
                  “名称”:“ REDUCE_INPUT_GROUPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:2235,
                  “名称”:“ REDUCE_SHUFFLE_BYTES”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:460,
                  “名称”:“ REDUCE_INPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ REDUCE_OUTPUT_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1200,
                  “名称”:“ SPILLED_RECORDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1
                  “名称”:“ SHUFFLED_MAPS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ FAILED_SHUFFLE”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1
                  “名称”:“ MERGED_MAP_OUTPUTS”
               },{
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:58
                  “名称”:“ GC_TIME_MILLIS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:1580,
                  “名称”:“ CPU_MILLISECONDS”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:462643200,
                  “名称”:“ PHYSICAL_MEMORY_BYTES”
               },
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:2149728256,
                  “名称”:“ VIRTUAL_MEMORY_BYTES”
               },
              {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:357957632,
                  “名称”:“ COMMITTED_HEAP_BYTES”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter”,
            “柜台”:[
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ BYTES_READ”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter”,
            “柜台”:[
               {
                  “ reduceCounterValue”:0,
                  “ mapCounterValue”:0,
                  “ totalCounterValue”:0,
                  “名称”:“ BYTES_WRITTEN”
               }
            ]
         }
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / counters 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:7027 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<jobCounters>
  <id> job_1326232085508_4_4 </ id>
  <counterGroup>
    <counterGroupName>随机播放错误</ counterGroupName>
    <计数器>
      <name> BAD_ID </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> CONNECTION </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> IO_ERROR </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> WRONG_LENGTH </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> WRONG_MAP </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> WRONG_REDUCE </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
  </ counterGroup>
  <counterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.FileSystemCounter </ counterGroupName>
    <计数器>
      <name> FILE_BYTES_READ </ name>
      <totalCounterValue> 2483 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> FILE_BYTES_WRITTEN </ name>
      <totalCounterValue> 108763 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> FILE_READ_OPS </名称>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> FILE_LARGE_READ_OPS </名称>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> FILE_WRITE_OPS </名称>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_READ </ name>
      <totalCounterValue> 48 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_WRITTEN </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> HDFS_READ_OPS </ name>
      <totalCounterValue> 1 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> HDFS_LARGE_READ_OPS </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> HDFS_WRITE_OPS </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
  </ counterGroup>
  <counterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.TaskCounter </ counterGroupName>
    <计数器>
      <名称> MAP_INPUT_RECORDS </名称>
      <totalCounterValue> 1 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> MAP_OUTPUT_RECORDS </名称>
      <totalCounterValue> 1200 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> MAP_OUTPUT_BYTES </名称>
      <totalCounterValue> 4800 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> MAP_OUTPUT_MATERIALIZED_BYTES </ name>
      <totalCounterValue> 2235 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> SPLIT_RAW_BYTES </ name>
      <totalCounterValue> 48 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> COMBINE_INPUT_RECORDS </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> COMBINE_OUTPUT_RECORDS </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_GROUPS </ name>
      <totalCounterValue> 460 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> REDUCE_SHUFFLE_BYTES </ name>
      <totalCounterValue> 2235 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_RECORDS </ name>
      <totalCounterValue> 460 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> REDUCE_OUTPUT_RECORDS </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> SPILLED_RECORDS </ name>
      <totalCounterValue> 1200 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> SHUFFLED_MAPS </ name>
      <totalCounterValue> 1 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> FAILED_SHUFFLE </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> MERGED_MAP_OUTPUTS </ name>
      <totalCounterValue> 1 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> GC_TIME_MILLIS </ name>
      <totalCounterValue> 58 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <名称> CPU_MILLISECONDS </名称>
      <totalCounterValue> 1580 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> PHYSICAL_MEMORY_BYTES </ name>
      <totalCounterValue> 462643200 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> VIRTUAL_MEMORY_BYTES </ name>
      <totalCounterValue> 2149728256 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
    <计数器>
      <name> COMMITTED_HEAP_BYTES </ name>
      <totalCounterValue> 357957632 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
  </ counterGroup>
  <counterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter </ counterGroupName>
    <计数器>
      <name> BYTES_READ </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter> </ counterGroup> <counterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter </ counterGroupName>
    <counter> <name> BYTES_WRITTEN </ name>
      <totalCounterValue> 0 </ totalCounterValue>
      <mapCounterValue> 0 </ mapCounterValue>
      <reduceCounterValue> 0 </ reduceCounterValue>
    </ counter>
  </ counterGroup>
</ jobCounters>
作业配置资源包含有关此作业的作业配置的信息。
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / conf
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
如果输出很大,这是输出的一小段。实际输出包含作业配置文件中的每个属性。
{
   “ conf”:{
      “ path”:“ hdfs://host.domain.com:9000 / user / user1 / .staging / job_1326232085508_0004 / job.xml”,
      “财产”:[
         {
            “ value”:“ / home / hadoop / hdfs / data”,
            “ name”:“ dfs.datanode.data.dir”,
            “源”:[“ hdfs-site.xml”,“ job.xml”]
         },
         {
            “ value”:“ org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer”,
            “ name”:“ hadoop.http.filter.initializers”
            “源”:[“以编程方式”,“ job.xml”]
         },
         {
            “ value”:“ / home / hadoop / tmp”,
            “名称”:“ mapreduce.cluster.temp.dir”
            “源”:[“ mapred-site.xml”]
         },
         ...
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / conf 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:552 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<conf>
  <path> hdfs://host.domain.com:9000 / user / user1 / .staging / job_1326232085508_0004 / job.xml </ path>
  <属性>
    <name> dfs.datanode.data.dir </ name>
    <value> / home / hadoop / hdfs / data </ value>
    <source> hdfs-site.xml </ source>
    <source> job.xml </ source>
  </ property>
  <属性>
    <name> hadoop.http.filter.initializers </ name>
    <value> org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer </ value>
    <source>以编程方式</ source>
    <source> job.xml </ source>
  </ property>
  <属性>
    <name> mapreduce.cluster.temp.dir </ name>
    <值> / home / hadoop / tmp </值>
    <source> mapred-site.xml </ source>
  </ property>
  ...
</ conf>
使用任务API,您可以获得代表作业的所有任务的资源集合。在此资源上运行GET操作时,您将获得任务对象的集合。
当您请求任务列表时,信息将作为任务对象数组返回。另请参阅任务API,以获取任务对象的语法。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| 任务 | 任务对象数组(JSON)/零个或多个任务对象(XML) | 任务对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “任务” : {
      “任务”:[
         {
            “进度”:100,
            “ elapsedTime”:2768,
            “ state”:“ Succeeded”,
            “ startTime”:1326238773493,
            “ id”:“ task_1326232085508_4_4_m_0”,
            “ type”:“ MAP”,
            “ successfulAttempt”:“ attempt_1326232085508_4_4_m_0_0”,
            “ finishTime”:1326238776261
         },
         {
            “进度”:100,
            “ elapsedTime”:0,
            “ state”:“ RUNNING”,
            “ startTime”:1326238777460,
            “ id”:“ task_1326232085508_4_4_r_0”,
            “ type”:“ REDUCE”,
            “ successfulAttempt”:“”,
            “ finishTime”:0
         }
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:603 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<任务>
  <任务>
    <startTime> 1326238773493 </ startTime>
    <finishTime> 1326238776261 </ finishTime>
    <elapsedTime> 2768 </ elapsedTime>
    <progress> 100.0 </ progress>
    <id> task_1326232085508_4_4_m_0 </ id>
    <state>成功</ state>
    <type> MAP </ type>
    <successfulAttempt> attempt_1326232085508_4_4_m_0_0 </ successfulAttempt>
  </ task>
  <任务>
    <startTime> 1326238777460 </ startTime>
    <finishTime> 0 </ finishTime>
    <elapsedTime> 0 </ elapsedTime>
    <progress> 100.0 </ progress>
    <id> task_1326232085508_4_4_r_0 </ id>
    <状态>运行中</状态>
    <type> REDUCE </ type>
    <successfulAttempt />
  </ task>
</ tasks>
任务资源包含有关作业中特定任务的信息。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 任务ID | 
| 州 | 串 | 任务的状态-有效值为:NEW,SCHEDULED,RUNNING,Succeeded,FAILED,KILL_WAIT,KILLED | 
| 类型 | 串 | 任务类型-MAP或REDUCE | 
| 成功尝试 | 串 | 上次成功尝试的ID | 
| 进展 | 浮动 | 任务进度百分比 | 
| 开始时间 | 长 | 任务开始的时间(从纪元开始以毫秒为单位) | 
| finishTime | 长 | 任务完成的时间(从纪元开始以毫秒为单位) | 
| 经过时间 | 长 | 自应用程序启动以来经过的时间(以毫秒为单位) | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “任务”:{
      “进度”:100,
      “ elapsedTime”:0,
      “ state”:“ RUNNING”,
      “ startTime”:1326238777460,
      “ id”:“ task_1326232085508_4_4_r_0”,
      “ type”:“ REDUCE”,
      “ successfulAttempt”:“”,
      “ finishTime”:0
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:299 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <任务> <startTime> 1326238777460 </ startTime> <finishTime> 0 </ finishTime> <elapsedTime> 0 </ elapsedTime> <progress> 100.0 </ progress> <id> task_1326232085508_4_4_r_0 </ id> <状态>运行中</状态> <type> REDUCE </ type> <successfulAttempt /> </ task>
使用任务计数器API,您可以反对代表该任务所有计数器的资源集合。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 任务ID | 
| taskcounterGroup | counterGroup对象的数组(JSON)/零个或多个counterGroup对象的XML | 计数器组对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / counters
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ jobTaskCounters”:{
      “ id”:“ task_1326232085508_4_4_r_0”,
      “ taskCounterGroup”:[
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.FileSystemCounter”,
            “柜台”:[
               {
                  “值”:2363,
                  “名称”:“ FILE_BYTES_READ”
               },
               {
                  “值”:54372,
                  “名称”:“ FILE_BYTES_WRITTEN”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_LARGE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_WRITE_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_BYTES_READ”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_BYTES_WRITTEN”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_LARGE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_WRITE_OPS”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.TaskCounter”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ COMBINE_INPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ COMBINE_OUTPUT_RECORDS”
               },
               {
                  “值”:460,
                  “名称”:“ REDUCE_INPUT_GROUPS”
               },
               {
                  “值”:2235,
                  “名称”:“ REDUCE_SHUFFLE_BYTES”
               },
               {
                  “值”:460,
                  “名称”:“ REDUCE_INPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ REDUCE_OUTPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ SPILLED_RECORDS”
               },
               {
                  “值”:1
                  “名称”:“ SHUFFLED_MAPS”
               },
               {
                  “值”:0,
                  “名称”:“ FAILED_SHUFFLE”
               },
               {
                  “值”:1
                  “名称”:“ MERGED_MAP_OUTPUTS”
               },
               {
                  “值”:26,
                  “名称”:“ GC_TIME_MILLIS”
               },
               {
                  “值”:860,
                  “名称”:“ CPU_MILLISECONDS”
               },
               {
                  “值”:107839488,
                  “名称”:“ PHYSICAL_MEMORY_BYTES”
               },
               {
                  “值”:1123147776,
                  “名称”:“ VIRTUAL_MEMORY_BYTES”
               },
               {
                  “值”:57475072,
                  “名称”:“ COMMITTED_HEAP_BYTES”
               }
            ]
         },
         {
            “ counterGroupName”:“随机播放错误”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ BAD_ID”
               },
               {
                  “值”:0,
                  “名称”:“连接”
               },
               {
                  “值”:0,
                  “名称”:“ IO_ERROR”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_LENGTH”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_MAP”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_REDUCE”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ BYTES_WRITTEN”
               }
            ]
         }
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / counters 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:2660 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<jobTaskCounters>
  <id> task_1326232085508_4_4_r_0 </ id>
  <taskCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.FileSystemCounter </ counterGroupName>
    <计数器>
      <name> FILE_BYTES_READ </ name>
      <value> 2363 </ value>
    </ counter>
    <计数器>
      <name> FILE_BYTES_WRITTEN </ name>
      <value> 54372 </ value>
    </ counter>
    <计数器>
      <名称> FILE_READ_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <名称> FILE_LARGE_READ_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <名称> FILE_WRITE_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_READ </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_WRITTEN </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_READ_OPS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_LARGE_READ_OPS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_WRITE_OPS </ name>
      <value> 0 </ value>
    </ counter>
  </ taskCounterGroup>
  <taskCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.TaskCounter </ counterGroupName>
    <计数器>
      <name> COMBINE_INPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> COMBINE_OUTPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_GROUPS </ name>
      <value> 460 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_SHUFFLE_BYTES </ name>
      <value> 2235 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_RECORDS </ name>
      <value> 460 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_OUTPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> SPILLED_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> SHUFFLED_MAPS </ name>
      <value> 1 </ value>
    </ counter>
    <计数器>
      <name> FAILED_SHUFFLE </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> MERGED_MAP_OUTPUTS </ name>
      <value> 1 </ value>
    </ counter>
    <计数器>
      <name> GC_TIME_MILLIS </ name>
      <value> 26 </ value>
    </ counter>
    <计数器>
      <名称> CPU_MILLISECONDS </名称>
      <value> 860 </ value>
    </ counter>
    <计数器>
      <name> PHYSICAL_MEMORY_BYTES </ name>
      <value> 107839488 </ value>
    </ counter>
    <计数器>
      <name> VIRTUAL_MEMORY_BYTES </ name>
      <value> 1123147776 </ value>
    </ counter>
    <计数器>
      <name> COMMITTED_HEAP_BYTES </ name>
      <value> 57475072 </ value>
    </ counter>
  </ taskCounterGroup>
  <taskCounterGroup>
    <counterGroupName>随机播放错误</ counterGroupName>
    <计数器>
      <name> BAD_ID </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> CONNECTION </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> IO_ERROR </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_LENGTH </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_MAP </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_REDUCE </ name>
      <value> 0 </ value>
    </ counter>
  </ taskCounterGroup>
  <taskCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter </ counterGroupName>
    <计数器>
      <name> BYTES_WRITTEN </ name>
      <value> 0 </ value>
    </ counter>
  </ taskCounterGroup>
</ jobTaskCounters>
使用任务尝试API,您可以获得代表作业中任务尝试的资源集合。在此资源上运行GET操作时,将获得“任务尝试对象”的集合。
当您请求任务尝试列表时,该信息将作为任务尝试对象数组返回。另请参阅Task Attempt API,以获取任务对象的语法。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| taskAttempt | 任务尝试对象(JSON)/零个或多个任务尝试对象(XML)的数组 | 任务尝试对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 /尝试
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ taskAttempts”:{
      “ taskAttempt”:[
         {
            “ elapsedMergeTime”:47,
            “ shuffleFinishTime”:1326238780052,
            “ assignedContainerId”:“ container_1326232085508_0004_01_000003”,
            “进度”:100,
            “ elapsedTime”:0,
            “ state”:“ RUNNING”,
            “ elapsedShuffleTime”:2592,
            “ mergeFinishTime”:1326238780099,
            “ rack”:“ / 98.139.92.0”,
            “ elapsedReduceTime”:0,
            “ nodeHttpAddress”:“ host.domain.com:8042”,
            “ type”:“ REDUCE”,
            “ startTime”:1326238777460,
            “ id”:“ attempt_1326232085508_4_4_r_0_0”,
            “ finishTime”:0
         }
      ]
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 /尝试 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:807 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<taskAttempts>
  <taskAttempt>
    <startTime> 1326238777460 </ startTime>
    <finishTime> 0 </ finishTime>
    <elapsedTime> 0 </ elapsedTime>
    <progress> 100.0 </ progress>
    <id> attempt_1326232085508_4_4_r_0_0 </ id>
    <rack> /98.139.92.0 </ rack>
    <状态>运行中</状态>
    <nodeHttpAddress> host.domain.com:8042 </ nodeHttpAddress>
    <type> REDUCE </ type>
    <assignedContainerId> container_1326232085508_0004_01_000003 </ assignedContainerId>
    <shuffleFinishTime> 1326238780052 </ shuffleFinishTime>
    <mergeFinishTime> 1326238780099 </ mergeFinishTime>
    <elapsedShuffleTime> 2592 </ elapsedShuffleTime>
    <elapsedMergeTime> 47 </ elapsedMergeTime>
    <elapsedReduceTime> 0 </ elapsedReduceTime>
  </ taskAttempt>
</ taskAttempts>
任务尝试资源包含有关作业中特定任务尝试的信息。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 任务ID | 
| 架 | 串 | 机架 | 
| 州 | 串 | 任务尝试的状态-有效值为:NEW,UNASSIGNED,ASSIGNED,RUNNING,COMMIT_PENDING,SUCCESS_CONTAINER_CLEANUP,SUCCEEDED,FAIL_CONTAINER_CLEANUP,FAIL_TASK_CLEANUP,FAILED,KILL_CONTAINER_CLEANUP,KILL_TAIL_ | 
| 类型 | 串 | 任务类型 | 
| AssignedContainerId | 串 | 此尝试分配给的容器ID | 
| nodeHttpAddress | 串 | 尝试执行此任务的节点的http地址 | 
| 诊断 | 串 | 诊断消息 | 
| 进展 | 浮动 | 任务尝试的进度百分比 | 
| 开始时间 | 长 | 任务尝试开始的时间(自时期起以毫秒为单位) | 
| finishTime | 长 | 任务尝试完成的时间(自纪元以来以毫秒为单位) | 
| 经过时间 | 长 | 自任务开始尝试以来经过的时间(以毫秒为单位) | 
对于减少任务尝试,您还具有以下字段:
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| shuffleFinishTime | 长 | 随机播放结束的时间(自纪元以来以毫秒为单位) | 
| mergeFinishTime | 长 | 合并完成的时间(自纪元以来以毫秒为单位) | 
| 经过的ShuffleTime | 长 | 随机播放阶段完成所需的时间(减少任务开始和随机播放完成之间的时间,以毫秒为单位) | 
| 经过的合并时间 | 长 | 合并阶段完成所需的时间(混洗完成和合并完成之间的时间,以毫秒为单位) | 
| 经过减少时间 | 长 | 还原阶段完成所需的时间(从合并完成到还原任务结束之间的时间,以毫秒为单位) | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / attempts / attempt_1326232085508_4_4_r_0_0
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ taskAttempt”:{
      “ elapsedMergeTime”:47,
      “ shuffleFinishTime”:1326238780052,
      “ assignedContainerId”:“ container_1326232085508_0004_01_000003”,
      “进度”:100,
      “ elapsedTime”:0,
      “ state”:“ RUNNING”,
      “ elapsedShuffleTime”:2592,
      “ mergeFinishTime”:1326238780099,
      “ rack”:“ / 98.139.92.0”,
      “ elapsedReduceTime”:0,
      “ nodeHttpAddress”:“ host.domain.com:8042”,
      “ startTime”:1326238777460,
      “ id”:“ attempt_1326232085508_4_4_r_0_0”,
      “ type”:“ REDUCE”,
      “ finishTime”:0
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / attempts / attempt_1326232085508_4_4_r_0_0 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:691 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <taskAttempt> <startTime> 1326238777460 </ startTime> <finishTime> 0 </ finishTime> <elapsedTime> 0 </ elapsedTime> <progress> 100.0 </ progress> <id> attempt_1326232085508_4_4_r_0_0 </ id> <rack> /98.139.92.0 </ rack> <状态>运行中</状态> <nodeHttpAddress> host.domain.com:8042 </ nodeHttpAddress> <type> REDUCE </ type> <assignedContainerId> container_1326232085508_0004_01_000003 </ assignedContainerId> <shuffleFinishTime> 1326238780052 </ shuffleFinishTime> <mergeFinishTime> 1326238780099 </ mergeFinishTime> <elapsedShuffleTime> 2592 </ elapsedShuffleTime> <elapsedMergeTime> 47 </ elapsedMergeTime> <elapsedReduceTime> 0 </ elapsedReduceTime> </ taskAttempt>
使用任务尝试状态API,您可以使用状态设置为“ KILLED”的PUT请求修改运行任务尝试的状态,从而查询提交的任务尝试的状态以及终止正在运行的任务尝试。要执行PUT操作,必须为AM Web服务设置身份验证。另外,您必须被授权杀死任务尝试。当前,您只能将状态更改为“已杀死”。尝试将状态更改为其他任何状态都会导致400错误响应。下面是未授权和错误请求错误的示例。当您执行成功的PUT时,初始响应可能是202。您可以通过重复PUT请求直到得到200,使用GET方法查询状态或查询任务尝试信息并检查,来确认该应用已被杀死。状态。在以下示例中,
请注意,为了终止任务尝试,必须为HTTP接口设置身份验证筛选器。该功能要求在HttpServletRequest中设置用户名。如果未设置任何过滤器,则响应将为“未经授权”响应。
此功能目前处于Alpha阶段,将来可能会更改。
当您请求应用程序状态时,返回的信息包含以下字段
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| 州 | 串 | 应用程序状态-可以是“ NEW”,“ STARTING”,“ RUNNING”,“ COMMIT_PENDING”,“ Succeeded”,“ FAILED”,“ KILLED”之一 | 
JSON回应
HTTP请求
GET http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 服务器:码头(6.1.26) 内容长度:20
响应主体:
{
  “ state”:“ STARTING”
}
HTTP请求
PUT http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
请求正文:
{
  “ state”:“ KILLED”
}
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 服务器:码头(6.1.26) 内容长度:18
响应主体:
{
  “ state”:“ KILLED”
}
XML回应
HTTP请求
GET http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 服务器:码头(6.1.26) 内容长度:121
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <jobTaskAttemptState> <状态>开始</状态> </ jobTaskAttemptState>
HTTP请求
PUT http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
请求正文:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <jobTaskAttemptState> <state> KILLED </ state> </ jobTaskAttemptState>
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 服务器:码头(6.1.26) 内容长度:121
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <jobTaskAttemptState> <state> KILLED </ state> </ jobTaskAttemptState>
未经授权的错误响应
HTTP请求
PUT http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
请求正文:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <jobTaskAttemptState> <state> KILLED </ state> </ jobTaskAttemptState>
响应标题:
HTTP / 1.1 403未经授权 内容类型:application / json 服务器:码头(6.1.26)
错误的请求错误响应
HTTP请求
PUT http:// proxy-http-address:port / proxy / application_1429692837321_0001 / ws / v1 / mapreduce / jobs / job_1429692837321_0001 / tasks / task_1429692837321_0001_m_000000 / attempts / attempt_1429692837321_0001_m_000000_0 / state
请求正文:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <jobTaskAttemptState> <状态>运行中</状态> </ jobTaskAttemptState>
响应标题:
HTTP / 1.1 400 内容长度:295 内容类型:application / xml 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?> <RemoteException> <exception> BadRequestException </ exception> <message> java.lang.Exception:仅允许将“ KILLED”作为目标状态。</ message> <javaClassName> org.apache.hadoop.yarn.webapp.BadRequestException </ javaClassName> </ RemoteException>
使用任务尝试计数器API,您可以反对代表该任务尝试的所有计数器的资源集合。
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| ID | 串 | 任务尝试ID | 
| taskAttemptcounterGroup | 任务尝试counterGroup对象(JSON)/零个或多个任务尝试counterGroup对象(XML)的数组 | 任务尝试计数器组对象的集合 | 
| 项目 | 数据类型 | 描述 | 
|---|---|---|
| counterGroupName | 串 | 柜台组名称 | 
| 计数器 | 计数器对象数组(JSON)/零个或多个计数器对象(XML) | 柜台对象的集合 | 
JSON回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / attempts / attempt_1326232085508_4_4_r_0_0 / counters
响应标题:
HTTP / 1.1 200 OK 内容类型:application / json 传输编码:分块 服务器:码头(6.1.26)
响应主体:
{
   “ jobTaskAttemptCounters”:{
      “ taskAttemptCounterGroup”:[
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.FileSystemCounter”,
            “柜台”:[
               {
                  “值”:2363,
                  “名称”:“ FILE_BYTES_READ”
               },
               {
                  “值”:54372,
                  “名称”:“ FILE_BYTES_WRITTEN”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_LARGE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ FILE_WRITE_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_BYTES_READ”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_BYTES_WRITTEN”
               },
              {
                  “值”:0,
                  “名称”:“ HDFS_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_LARGE_READ_OPS”
               },
               {
                  “值”:0,
                  “名称”:“ HDFS_WRITE_OPS”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.TaskCounter”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ COMBINE_INPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ COMBINE_OUTPUT_RECORDS”
               },
               {
                  “值”:460,
                  “名称”:“ REDUCE_INPUT_GROUPS”
               },
               {
                  “值”:2235,
                  “名称”:“ REDUCE_SHUFFLE_BYTES”
               },
               {
                  “值”:460,
                  “名称”:“ REDUCE_INPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ REDUCE_OUTPUT_RECORDS”
               },
               {
                  “值”:0,
                  “名称”:“ SPILLED_RECORDS”
               },
               {
                  “值”:1
                  “名称”:“ SHUFFLED_MAPS”
               },
               {
                  “值”:0,
                  “名称”:“ FAILED_SHUFFLE”
               },
               {
                  “值”:1
                  “名称”:“ MERGED_MAP_OUTPUTS”
               },
               {
                  “值”:26,
                  “名称”:“ GC_TIME_MILLIS”
               },
               {
                  “值”:860,
                  “名称”:“ CPU_MILLISECONDS”
               },
               {
                  “值”:107839488,
                  “名称”:“ PHYSICAL_MEMORY_BYTES”
               },
               {
                  “值”:1123147776,
                  “名称”:“ VIRTUAL_MEMORY_BYTES”
               },
               {
                  “值”:57475072,
                  “名称”:“ COMMITTED_HEAP_BYTES”
               }
            ]
         },
         {
            “ counterGroupName”:“随机播放错误”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ BAD_ID”
               },
               {
                  “值”:0,
                  “名称”:“连接”
               },
               {
                  “值”:0,
                  “名称”:“ IO_ERROR”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_LENGTH”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_MAP”
               },
               {
                  “值”:0,
                  “名称”:“ WRONG_REDUCE”
               }
            ]
         },
         {
            “ counterGroupName”:“ org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter”,
            “柜台”:[
               {
                  “值”:0,
                  “名称”:“ BYTES_WRITTEN”
               }
            ]
         }
      ],
      “ id”:“ attempt_1326232085508_4_4_r_0_0”
   }
}
XML回应
HTTP请求:
GET http:// proxy-http-address:port / proxy / application_1326232085508_0004 / ws / v1 / mapreduce / jobs / job_1326232085508_4_4 / tasks / task_1326232085508_4_4_r_0 / attempts / attempt_1326232085508_4_4_r_0_0 / counters 接受:application / xml
响应标题:
HTTP / 1.1 200 OK 内容类型:application / xml 内容长度:2735 服务器:码头(6.1.26)
响应主体:
<?xml版本=“ 1.0”编码=“ UTF-8”独立=“是”?>
<jobTaskAttemptCounters>
  <id> attempt_1326232085508_4_4_r_0_0 </ id>
  <taskAttemptCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.FileSystemCounter </ counterGroupName>
    <计数器>
      <name> FILE_BYTES_READ </ name>
      <value> 2363 </ value>
    </ counter>
    <计数器>
      <name> FILE_BYTES_WRITTEN </ name>
      <value> 54372 </ value>
    </ counter>
    <计数器>
      <名称> FILE_READ_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <名称> FILE_LARGE_READ_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <名称> FILE_WRITE_OPS </名称>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_READ </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_BYTES_WRITTEN </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_READ_OPS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_LARGE_READ_OPS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> HDFS_WRITE_OPS </ name>
      <value> 0 </ value>
    </ counter>
  </ taskAttemptCounterGroup>
  <taskAttemptCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.TaskCounter </ counterGroupName>
    <计数器>
      <name> COMBINE_INPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> COMBINE_OUTPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_GROUPS </ name>
      <value> 460 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_SHUFFLE_BYTES </ name>
      <value> 2235 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_INPUT_RECORDS </ name>
      <value> 460 </ value>
    </ counter>
    <计数器>
      <name> REDUCE_OUTPUT_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> SPILLED_RECORDS </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> SHUFFLED_MAPS </ name>
      <value> 1 </ value>
    </ counter>
    <计数器>
      <name> FAILED_SHUFFLE </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> MERGED_MAP_OUTPUTS </ name>
      <value> 1 </ value>
    </ counter>
    <计数器>
      <name> GC_TIME_MILLIS </ name>
      <value> 26 </ value>
    </ counter>
    <计数器>
      <名称> CPU_MILLISECONDS </名称>
      <value> 860 </ value>
    </ counter>
    <计数器>
      <name> PHYSICAL_MEMORY_BYTES </ name>
      <value> 107839488 </ value>
    </ counter>
    <计数器>
      <name> VIRTUAL_MEMORY_BYTES </ name>
      <value> 1123147776 </ value>
    </ counter>
    <计数器>
      <name> COMMITTED_HEAP_BYTES </ name>
      <value> 57475072 </ value>
    </ counter>
  </ taskAttemptCounterGroup>
  <taskAttemptCounterGroup>
    <counterGroupName>随机播放错误</ counterGroupName>
    <计数器>
      <name> BAD_ID </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> CONNECTION </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> IO_ERROR </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_LENGTH </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_MAP </ name>
      <value> 0 </ value>
    </ counter>
    <计数器>
      <name> WRONG_REDUCE </ name>
      <value> 0 </ value>
    </ counter>
  </ taskAttemptCounterGroup>
  <taskAttemptCounterGroup>
    <counterGroupName> org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter </ counterGroupName>
    <计数器>
      <name> BYTES_WRITTEN </ name>
      <value> 0 </ value>
    </ counter>
  </ taskAttemptCounterGroup>
</ jobTaskAttemptCounters>